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Abstract
Spin-dependent electronic transport through a quantum dot side-coupled to two quantum dots
and attached to ferromagnetic leads with collinear (parallel and antiparallel) magnetizations is
analyzed theoretically. The intra-dot Coulomb correlations are taken into account, whereas the
inter-dot ones are neglected. Transport characteristics, i.e. conductance and tunnel
magnetoresistance associated with the magnetization rotation from parallel to antiparallel
configurations, are calculated by the non-equilibrium Green’s function technique. The Green’s
functions are derived by the equation of motion method in the Hartree–Fock approximation.
The conductance spectra are shown to reveal features similar to the Dicke resonance in atomic
physics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interference effects in electronic transport through coupled
quantum dots (QDs) are of great interest from both
fundamental and application points of view. One of
the simplest systems where the interference effects are
clearly visible consists of two QDs connected in parallel to
electron reservoirs (metallic or semiconducting leads). This
interferometer-like geometry allows the observation of such
quantum phenomena like the Aharonov–Bohm oscillations and
the Fano antiresonance [1–13].

The conductance of systems consisting of three or more
QDs reveals further interesting features of quantum transport
[14–24]. Of particular importance seems to be the interference
phenomenon [25–29], which resembles the well known Dicke
resonance in atomic physics [30–32]. The key feature of the
Dicke resonance is the presence of a strong and very narrow
emission line of a collection of atoms which are separated by
a distance smaller than the wavelength of the emitted light
[30, 31].

In this paper we consider the Dicke-like resonance in
spin-polarized transport through a system of three coupled
QDs. One of the QDs is attached to two ferromagnetic
leads, while the other two dots are side-coupled to the first
one. Our considerations include intra-dot electron correlation,
while the inter-dot Coulomb interaction is assumed to be

much smaller than the intra-dot one and is omitted. Transport
characteristics, in particular the conductance of the system
and tunnel magnetoresistance (TMR) associated with rotation
of the electrodes’ magnetizations from antiparallel to parallel
alignment, are calculated by the non-equilibrium Green’s
function technique in the linear response regime. Since the
systems with Coulomb interactions cannot be solved exactly,
we applied the Hartree–Fock (HF) approximation scheme to
calculate the relevant Green’s functions from the equations of
motion.

In section 2 we describe the model, while theoretical
formulation of the problem and basic analytical formula are
presented in section 3. Numerical results for symmetric and
asymmetric systems are shown and discussed in section 4. It is
shown there that narrow Dicke-like peaks appear in the linear
conductance. Final conclusions are given in section 5.

2. Description of the model

In this paper we consider a system consisting of three
single-level quantum dots, coupled as shown schematically
in figure 1. The dots QD1 and QD3 are coupled to the
dot QD2 via direct hopping term. The dot QD2, in turn,
is additionally attached to ferromagnetic leads (see figure 1).
Generally, couplings between the dots as well as those between
the dots and external leads can be controlled by applied
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Figure 1. Schematic picture of the quantum dot system coupled
to ferromagnetic leads. �α

22σ (α = L, R) describe spin-dependent
coupling of the dot QD2 to the ferromagnetic leads, whereas t j2σ

is the hopping parameter between the j th dot ( j = 1, 3) and the
dot QD2.

gate voltages. We also note that technological difficulties
associated with attaching a semiconductor quantum dot to
ferromagnetic metallic leads have been overcome and the
first experimental results on spin-polarized transport through
individual semiconductor quantum dots have been published
very recently [33]. Thus, the experimental investigation
of spin-polarized transport in systems of coupled quantum
dots seems to be only a matter of time. For simplicity we
consider only collinear (parallel and antiparallel) magnetic
orientations of the leads’ magnetic moments. Apart from this,
we include the intra-dot Coulomb interactions, while the inter-
dot Coulomb repulsion is assumed to be weak and therefore is
neglected. The system under consideration is then described by
Hamiltonian of the general form Ĥ = ĤL + ĤR + ĤQD + ĤT.
The terms ĤL and ĤR describe respectively the left and right
electrodes in the non-interacting quasi-particle approximation,
Ĥα = ∑

kσ εkασ c†
kασ ckασ (for α = L, R). Here, c†

kασ

(ckασ ) is the creation (annihilation) operator of an electron with
wavevector k and spin σ in the lead α, whereas εkασ denotes
the corresponding single-particle energy.

The third term of the Hamiltonian H describes the system
of three coupled quantum dots,

ĤQD =
∑

iσ

εiσ d†
iσ diσ +

3∑

i=1

Ui niσ ni σ̄

−
∑

j (=1,3)

∑

σ

(t j2σ d†
2σd jσ + h.c.), (1)

where εiσ is the energy level of the i th dot (i = 1, 2, 3),
and t j2σ is the hopping parameter between the j th dot ( j =
1, 3) and the dot QD2. Both εiσ and t j2σ are assumed to
be spin dependent in the general case. The second term
of the Hamiltonian ĤQD describes the intra-dot Coulomb
interactions, with Ui (i = 1, 2, 3) denoting the corresponding
Coulomb integrals.

The last term of the system’s Hamiltonian, HT, describes
electron tunneling from the leads to the dot QD2 (or vice
versa), and takes the form

ĤT =
∑

kα

∑

σ

(V α
2kσ c†

kασ d2σ + h.c.) (2)

where V α
2kσ are the relevant matrix elements. Coupling of

the dot to external leads can be parameterized in terms of
�α

σ (ε) = 2π
∑

k V α
2kσ V α∗

2kσδ(ε − εkασ ). We assume that �α
σ (ε)

is constant within the electron band, �α
σ (ε) = �α

σ = const for
ε ∈ 〈−D, D〉, and �α

σ (ε) = 0 otherwise. Here, 2D denotes
the electron band width. Introducing the spin polarization pr

of lead r (r = L, R) as pr = (ρ+
r − ρ−

r )/(ρ+
r + ρ−

r ), the
coupling parameters can be expressed as �+(−)

r = �r (1 ± pr ),
with �r = (�+

r + �−
r )/2. Here, ρ+

r and ρ−
r are the densities

of states at the Fermi level for spin-majority and spin-minority
electrons in the lead r , while �+

r and �−
r describe coupling of

the dot QD2 to the lead r in the spin-majority and spin-minority
channels, respectively.

3. Analytical description

Electric current J flowing through the system is given by the
formula [34, 35]

J = ie

2h̄

∫
dε

2π
Tr {[ΓL(ε) − ΓR(ε)]G<(ε)

+ [ fL(ε)ΓL(ε) − fR(ε)ΓR(ε)][Gr(ε) − Ga(ε)]}, (3)

where, fα(ε) = [e(ε−μα)/kB T + 1]−1 is the Fermi–Dirac
distribution function in the lead α, G<(ε) and Gr(a)(ε) are
the Fourier transforms of the lesser and retarded (advanced)
Green’s functions of the dots, and Γα(ε) (for α = L, R) is a
matrix which describes coupling of the dots to the leads. In the
case under consideration, the matrix Γα(ε) takes a simple form
with only one non-zero matrix element,

Γα
σ =

( 0 0 0
0 �α

22σ 0
0 0 0

)

. (4)

In the case under consideration, one can write �L
22σ = �(1 ±

pL) for coupling of the dot to the left lead, and �R
22σ =

γ�(1 ± pR) (parallel configuration) or �R
22σ = γ�(1 ∓ pR)

(antiparallel configuration) for coupling to the right lead. Here,
σ = ↑ (upper sign), σ = ↓ (lower sign), and � is a constant,
whereas γ describes asymmetry in the coupling of the dot to
the left and right leads.

To calculate electric current, one needs to know the
Green’s functions Gr(a)

i jσ (ε). These can be found by the equation
of motion method. First, we apply the equation of motion to
the causal Green’s function Gi jσ (ε). This equation of motion
generates higher-order Green’s functions, for which we write
the corresponding equations of motion. New higher-order
Green’s functions are then decoupled in terms of the Hartree–
Fock decoupling scheme. This decoupling scheme, described
in detail in [2, 12], allows us to express the higher-order Gree’s
functions through the lower-order ones. This, in turn, allows
us to close the relevant system of equations for the Green’s
function Gi jσ (ε) and to write it in the matrix form as
(

ε − ε1σ − A1 t12σ B1 0
t12σ B2 ε − ε2σ − �σ − A2 t32σ B2

0 t32σ B3 ε − ε3σ − A3

)

×
( G1 jσ

G2 jσ

G3 jσ

)

=
(

δ1 j B1

δ2 j B2

δ3 j B3

)

, (5)

where, for simplicity, the ε-dependence of the Green’s
functions and other parameters has not been indicated
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explicitly (it will be restored where necessary). Apart from
this, we have introduced the following notation:

Ai = Ui (ni2σ̄ − n2i σ̄ )

ε − εiσ − Ui
(6)

for i = 1, 3,

A2 = U2(ε − ε2σ − U2)
−1[t12σ (n12σ̄ − n21σ̄ )

+ t32σ (n32σ̄ − n23σ̄ ) + (C†
2σ̄ − C2σ̄ )n2σ̄ �σ ], (7)

and

Bi = 1 + Ui n2σ̄

ε − εiσ − Ui
(8)

for i = 1, 2, 3. To simplify notation, here we put 〈ni jσ 〉 =
〈d+

i d j〉 = ni jσ , 〈niσ 〉 = 〈d+
i di〉 = niσ , and C2σ̄ ≡

∑
kα V α

2kσ̄ 〈c†
kασ̄ d2σ̄ 〉. We have also defined the self-energy �σ

as
�σ = �L

σ + �R
σ , (9)

with

�α
σ =

∑

k

V α
2kσ V α∗

2kσ

ε − εkασ

(10)

for α = L, R.
Having found the causal Green’s functions from equa-

tion (5), one can calculate the retarded (advanced) Green’s
functions as Gr(a)

i jσ (ε) = Gi jσ (ε ± i0+). The corresponding
self-energy �r(a)

σ (ε) = �σ (ε ± i0+) then takes the form,

�r(a)
σ (ε) = �22σ (ε) ∓ i

2
�22σ , (11)

with
�22σ = �L

22σ + �R
22σ , (12)

and

�22σ (ε) = − 1

2π
�22σ ln

(
D − ε

D + ε

)

. (13)

Now, we need to find the lesser Green’s function. This
can be found from the corresponding equation of motion,
with the higher-order Green’s functions calculated on taking
into account the Langreth theorem [35] and the Hartree–Fock
decoupling scheme used when calculating the causal Green’s
function.

4. Numerical results

Using the formulas derived above, we calculate numerically
the basic transport characteristics, i.e. the conductance and
tunnel magnetoresistance. The latter quantity describes the
change in resistance when the magnetic configuration of the
system varies from antiparallel to parallel, and is described
quantitatively by the ratio (RAP − RP)/RP, where RAP and RP

denote the resistance in the antiparallel and parallel magnetic
configurations, respectively. We assume that the dot levels are
spin degenerate, εiσ = εi (for i = 1, 2, 3), and introduce two
parameters, h1 and h2, which describe separation of the levels
ε1 and ε3 from the level ε2, i.e. ε1 = ε2 − h1 and ε3 = ε2 + h2.
Moreover, we assume pL = pR = p and γ = 1.

Consider first the limit of vanishing Coulomb interaction,
Ui = 0 for i = 1, 2, 3. In figure 2 we show the linear

Figure 2. Linear conductance in the parallel magnetic configuration,
calculated as a function of the energy level ε2 of QD2 for indicated
values of the intra-dot coupling parameters t21 and t23 and for
p = 0.4, U1 = U2 = U3 = 0, h1 = h2 = 0.2, γ = 1, and
kBT = 0.01. The energy is measured in the units of �.

conductance in the parallel magnetic configuration, calculated
as a function of the energy level ε2 of QD2, measured from
the Fermi level of the leads. The total conductance as well as
that of individual spin channel are shown there. The energy
level of the dot QD1 is shifted down by 0.2 with respect to ε2,
while that of QD3 is shifted up by the same amount. Here,
and in the following, the energy is measured in units of �

(� = �L = �R). The hopping parameter t23 is constant,
while the parameter t21 increases from zero in figure 2(a)
to t21 = t23 in figure 2(f). Let us now analyze the main
features of the conductance spectra. In figure 2(a) the dot QD1
is entirely detached from the dot QD2 and therefore has no
influence on transport. The other two dots are coupled and
form bonding-and anti-bonding-like states. Due to a non-zero
value of h2, these states are coupled differently to the leads.
The linear conductance then shows two relatively broad peaks
related to the bonding-and anti-bonding-like states, with a deep
minimum in between, where the conductance turns to zero due
to destructive interference of electron waves transmitted via
bonding and anti-bonding states. We note that the broadening
of peaks is determined mainly by the coupling to the leads, but
temperature also plays a role.

When the dot QD1 becomes weakly coupled to the dot
QD2, a narrow peak emerges in the conductance at the
position corresponding to the energy level of the dot QD1
(see figures 2(b)–(d)). The onset of this peak is a direct
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consequence of a non-zero value of t21. The dots QD1 and
QD3 are then both coupled to the dot QD2 and, disregarding
coupling to the leads, one finds three new energy level of the
whole three-dot system. The level corresponding to the new
peak is only weakly coupled to the leads. When t21 increases
further, this peak moves towards zero energy, and in the strictly
symmetrical case, t21 = t23, the peak appears strictly at
the position corresponding to the bare level of the dot QD2,
ε2 = 0. The spectrum then becomes symmetrical, which is a
consequence of the symmetry in the system. The central peak,
however, remains much narrower than the other two peaks. A
similar scenario also holds for constant t21 and t23 increasing
from zero to t23 = t21. The new peak now emerges on the
left-hand side of the minimum and moves towards ε2 = 0, as
before. All the features discussed above appear not only in
the total conductance but also in the conductance of each spin
channel separately, as is clearly seen in figure 2. The heights of
the side peaks in figure 2 are equal to two conductance quanta
(e2/h), independently of the values of the inter-dot hopping
parameters. The height of the central narrow peak, however, is
smaller than that of the side broad peaks.

The central narrow peak resembles the Dicke resonance in
atomic physics, where a strong narrow emission line appears
when the distance between atoms is smaller than the Fermi
wavelength of the corresponding radiation. In our case the role
of distance between atoms is played by the distance in energy
levels, h1 and h2. When h1 and h2 increase, the width of the
central line also increases. The two side peaks, in turn, become
narrower and narrower. This is shown explicitly in figure 3,
where the linear conductance for the symmetrical situation is
presented for increasing h1 and h2 (the other parameters are the
same as in figure 2). This behavior is quite reasonable, as the
eigen-states of the dot system become more and more localized
on the corresponding individual dots with increasing h1 and
h2. Since the dots QD1 and QD3 are not coupled directly
to the leads, the corresponding side peaks in the conductance
become narrower and their width decreases with increasing h1

and h2. The central zero-energy level then becomes localized
on the dot QD2, and the corresponding peak in the conductance
becomes broader. Moreover, the height of the central peaks
increases and becomes equal to two conductance quanta, while
that of the side peaks decreases with increasing h1 and h2.

When h1 = h2 
= 0 and t12 = t23 = t 
= 0 (as in
figure 3), the two side peaks in the conductance appear at
the positions ±√

h2 + 2t2. The third (central) peak occurs at
ε = 0, while the conductance reaches zero at ±h. A particular
situation occurs when h1 = h2 = 0. The central peak, clearly
seen in figure 3 for h1, h2 
= 0, then does not occur in the
conductance. Since the system of three single-level QDs has
three molecular-like states (denoted by the index 1, 2 and 3
for increasing energy), one could also expect three peaks in
the conductance. However, the matrix elements of coupling
between the molecular state |2̃〉 and the left-hand and right-
hand leads vanish, the molecular state |2̃〉 becomes decoupled
from the leads for h1 = h2 = 0, which leads to the absence
of the central peak in the conductance. As a consequence, one
observes only two peaks in the linear conductance, situated at
the positions ε = ±√

2t , and the transmission reaches zero

Figure 3. Linear conductance in the parallel magnetic configuration,
calculated as a function of the energy level ε2 of QD2 for indicated
values of the level shifts h1 and h2, and for t21 = t23 = 0.8, p = 0.4,
γ = 1, U1 = U2 = U3 = 0, and kBT = 0.01. The energy is
measured in units of �.

at ε = 0 (the eigenvalue of the state |2̃〉). To show this
more formally, let us perform the transformation of the dot’s
operators

d̃1σ = 1
2 (d1σ + √

2d2σ + d3σ ), (14)

d̃2σ = 1√
2
(d1σ − d3σ ), (15)

d̃3σ = 1
2 (d1σ − √

2d2σ + d3σ ). (16)

Assuming εiσ = ε0 for i = 1, 2, 3, the Hamiltonian of the
isolated triple dots then becomes diagonal and takes the form

H̃QD = (ε0 + √
2t)d̃†

1σ d̃1σ + ε0d̃†
2σ d̃2σ + (ε0 − √

2t)d̃†
3σ d̃3σ .

(17)
In turn, the tunneling Hamiltonian then acquires the form

H̃T =
∑

kασ

∑

i=1,3

(Ṽ α
ikσ c†

kασ d̃iσ + h.c.), (18)

where

Ṽ α
1kσ =

√
2

2
V α

2kσ , (19)

Ṽ α
3kσ = −

√
2

2
V α

2kσ , (20)

and
Ṽ α

2kσ = 0. (21)

4



J. Phys.: Condens. Matter 20 (2008) 125220 P Trocha and J Barnaś

Figure 4. Linear conductance in the parallel magnetic configuration,
calculated as a function of the energy level ε2 of QD2 for indicated
values of temperature and intra-dot Coulomb repulsion parameters
U1, U2, U3. The other parameters are: t21 = t23 = 0.8,
h1 = h2 = 0.2, p = 0.4, and γ = 1. The energy is measured in the
units of �.

This clearly shows that the central molecular-like level
becomes effectively decoupled from the leads.

Let us now consider the influence of Coulomb correlation
in the dots (non-zero parameters Ui for i = 1, 2, 3) and non-
zero temperature on the spectra described above. Figure 4(a)
corresponds to figure 2(f), except for the Coulomb parameters,
which in figure 4(a) are non-zero, U1 = U2 = U3 = 1,
while in figure 2(f) they vanish, U1 = U2 = U3 = 0.
Owing to the non-zero Coulomb parameters, the number of
peaks in the conductance doubles in comparison to that in the
case with vanishing Coulomb interaction. The side peaks are
broad, as in figure 2(f), whereas all the other four peaks are
very narrow. Figure 4(b) shows the conductance spectrum for
the same parameters as in figure 4(a), except for temperature,
which is now higher. The peak heights are now smaller and
the peaks become broader, as one might expect. Figures 4(c)–
(e) show the conductance for a system with the Coulomb
parameter vanishing for one or two dots. When the Coulomb
parameter of a particular dot vanishes, the number of peaks
decreases by one. In all the cases, however, the side peaks
are broad while the others are narrow. Figure 4(f) corresponds
to figure 4(a), but calculated for larger Coulomb correlation
parameters, U1 = U2 = U3 = 4. The whole spectrum
becomes clearly split into two parts; one is similar to that for
vanishing Coulomb parameters, and the second is its Coulomb
counterpart, with a mirror plane somewhere in between the
two parts.

Figure 5. TMR in the linear response regime, calculated as a
function of the energy level ε2 of QD2 for indicated values of the
intra-dot Coulomb repulsion parameters U1, U2, U3, and for
t21 = t23 = 0.8, h1 = h2 = 0.2, p = 0.4, γ = 1, and kBT = 0.01.
The energy is measured in units of �.

All the results presented above were calculated for the par-
allel configuration of the leads’ magnetic moments. Qualita-
tively similar results have been obtained for the antiparallel
magnetic configuration. The quantitative difference leads to
a non-zero TMR. In figure 5 we show TMR in the linear re-
sponse regime as a function of the energy level ε2 of QD2.
When the dots’ levels are well above or well below the Fermi
level of the leads, the TMR tends to the Julliere’s value ob-
served in planar magnetic tunnel junctions. When, in turn, the
dot levels cross the Fermi energy, the situation becomes more
complex and TMR depends significantly on the Coulomb pa-
rameters Ui . In the limit of Ui = 0 for i = 1, 2, 3, see fig-
ure 5(a), TMR then shows a clear peak structure and fluctu-
ates about the Julliere’s value. Qualitatively similar behavior of
TMR was also found in transport through single quantum dots
[36]. The variation of TMR with the level position is more
complex for non-zero values of the Coulomb correlation pa-
rameters, as shown in figure 5(b). Significant resonance-like
peaks in the TMR now occur at certain values of the level posi-
tions, at which the conductance (current) is strongly suppressed
by the interference effects. The presence of such peaks in TMR
is a consequence of the fact that the conditions for full destruc-
tive interference depend on the magnetic configuration of the
system for non-zero values of Ui . Outside the resonance-like

5
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peaks, the behavior of TMR is similar to that for vanishing Ui ,
except that the number of different peaks is larger due to the
Coulomb counterparts in the conductance spectra.

5. Conclusions

In conclusion, we have calculated the conductance of three
coupled quantum dots. The conductance spectra, calculated
in the Hartree–Fock approximation, clearly show the presence
of a central narrow peak, which resembles the Dicke resonance
in optical emission spectra of atoms. We have also shown that
the Coulomb correlations on the dots lead to a doubling of the
resonance peaks in the conductance. Additionally, we have
calculated the TMR effect associated with rotation of the leads’
magnetic moments from antiparallel to parallel alignment, and
shown that the intra-dot Coulomb correlation leads to some
resonance-like enhancement of TMR at some values of the
level positions.
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[11] Sztenkiel D and Świrkowicz R 2007 J. Phys.: Condens. Matter

19 386224
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